Getting Started¶
Install DELM, connect a language-model provider, and run your first extraction pipeline.
Installation¶
Install from PyPI:
pip install delm
Or install from source:
git clone https://github.com/Center-for-Applied-AI/delm.git
cd delm
pip install -e .
If you use the optional developer tooling (tests, linters, notebooks), install the dev
extra:
pip install -e .[dev]
Configure Environment Variables¶
Create an .env
file (or export in your shell) with credentials for the LLM providers you use. A minimal configuration:
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=...
TOGETHER_API_KEY=...
Replace the values with your credentials. DELM only loads providers that have available keys.
Quick Start¶
Use the high-level DELM
class to load a pipeline configuration and run a job:
from pathlib import Path
from delm import DELM
pipeline = DELM.from_yaml(
config_path="example.config.yaml",
experiment_name="my_experiment",
experiment_directory=Path("experiments"),
)
pipeline.prep_data("data/input.txt")
pipeline.process_via_llm()
results = pipeline.get_extraction_results()
cost_summary = pipeline.get_cost_summary()
Project Layout¶
A typical project structure keeps inputs, configuration, and outputs separated:
project/
├── data/
│ └── input.txt
├── config/
│ └── pipeline.yaml
├── schema/
│ └── schema_spec.yaml
└── experiments/
└── my_experiment/
- Pipeline configuration controls providers, preprocessing, and batching.
- Schema specification declares the fields you want to extract.
- Experiments directory stores run artifacts, logs, and summaries.
Next Steps¶
- Review Pipeline Configuration to understand every option in the YAML config.
- Explore the Schema Reference for guidance on designing robust schemas.
- Check the
examples/
directory for sample configs covering common extraction scenarios.